2,130 research outputs found

    Smart City Analytics: Ensemble-Learned Prediction of Citizen Home Care

    Full text link
    We present an ensemble learning method that predicts large increases in the hours of home care received by citizens. The method is supervised, and uses different ensembles of either linear (logistic regression) or non-linear (random forests) classifiers. Experiments with data available from 2013 to 2017 for every citizen in Copenhagen receiving home care (27,775 citizens) show that prediction can achieve state of the art performance as reported in similar health related domains (AUC=0.715). We further find that competitive results can be obtained by using limited information for training, which is very useful when full records are not accessible or available. Smart city analytics does not necessarily require full city records. To our knowledge this preliminary study is the first to predict large increases in home care for smart city analytics

    The optimal legal retirement age in an OLG model with endogenous labour supply

    Get PDF
    The long run welfare implications of the legal retirement age are studied in a perfect foresight overlapping-generations model where agents live for two periods. Agents’ lifetime is divided between working life and retirement by a legal retirement age controlled by the government whereas agents, besides savings, control the intensive margin or "yearly" labour supply. The legal retirement age is utilized to dampen distortionary effects of payroll taxes and public pension annuities and promote capital accumulation. We show that a social optimal legal retirement age exists and how it depends on whether payroll taxes or benefit annuities ensures budget balance of the PAYG pension system.Optimal legal retirement age; pay-as-you-go-pension systems; overlapping-generations model

    Sequence Modelling For Analysing Student Interaction with Educational Systems

    Full text link
    The analysis of log data generated by online educational systems is an important task for improving the systems, and furthering our knowledge of how students learn. This paper uses previously unseen log data from Edulab, the largest provider of digital learning for mathematics in Denmark, to analyse the sessions of its users, where 1.08 million student sessions are extracted from a subset of their data. We propose to model students as a distribution of different underlying student behaviours, where the sequence of actions from each session belongs to an underlying student behaviour. We model student behaviour as Markov chains, such that a student is modelled as a distribution of Markov chains, which are estimated using a modified k-means clustering algorithm. The resulting Markov chains are readily interpretable, and in a qualitative analysis around 125,000 student sessions are identified as exhibiting unproductive student behaviour. Based on our results this student representation is promising, especially for educational systems offering many different learning usages, and offers an alternative to common approaches like modelling student behaviour as a single Markov chain often done in the literature.Comment: The 10th International Conference on Educational Data Mining 201

    Neural Speed Reading with Structural-Jump-LSTM

    Full text link
    Recurrent neural networks (RNNs) can model natural language by sequentially 'reading' input tokens and outputting a distributed representation of each token. Due to the sequential nature of RNNs, inference time is linearly dependent on the input length, and all inputs are read regardless of their importance. Efforts to speed up this inference, known as 'neural speed reading', either ignore or skim over part of the input. We present Structural-Jump-LSTM: the first neural speed reading model to both skip and jump text during inference. The model consists of a standard LSTM and two agents: one capable of skipping single words when reading, and one capable of exploiting punctuation structure (sub-sentence separators (,:), sentence end symbols (.!?), or end of text markers) to jump ahead after reading a word. A comprehensive experimental evaluation of our model against all five state-of-the-art neural reading models shows that Structural-Jump-LSTM achieves the best overall floating point operations (FLOP) reduction (hence is faster), while keeping the same accuracy or even improving it compared to a vanilla LSTM that reads the whole text.Comment: 10 page

    Modelling Sequential Music Track Skips using a Multi-RNN Approach

    Get PDF
    Modelling sequential music skips provides streaming companies the ability to better understand the needs of the user base, resulting in a better user experience by reducing the need to manually skip certain music tracks. This paper describes the solution of the University of Copenhagen DIKU-IR team in the 'Spotify Sequential Skip Prediction Challenge', where the task was to predict the skip behaviour of the second half in a music listening session conditioned on the first half. We model this task using a Multi-RNN approach consisting of two distinct stacked recurrent neural networks, where one network focuses on encoding the first half of the session and the other network focuses on utilizing the encoding to make sequential skip predictions. The encoder network is initialized by a learned session-wide music encoding, and both of them utilize a learned track embedding. Our final model consists of a majority voted ensemble of individually trained models, and ranked 2nd out of 45 participating teams in the competition with a mean average accuracy of 0.641 and an accuracy on the first skip prediction of 0.807. Our code is released at https://github.com/Varyn/WSDM-challenge-2019-spotify.Comment: 4 page

    The diffusion of health technologies: Cultural and biological divergence

    Get PDF
    This paper proposes the hypothesis that genetic distance to the health frontier influences population health outcomes. Evidence from a world sample suggests that genetic distance - interpreted as long-term cultural and biological divergence - is an important factor in understanding health inequalities across countries. In particular, the paper documents a remarkably robust link between genetic distance and health as measured by life expectancy at birth and the adult survival rate. Also, the evidence reveals that the link has strengthened considerably over the 20th century which highlights the increasing effects of globalization on health conditions across countries through the transmission of health technologies.Population health; international diffusion of health technologies; globalization; cultural and biological divergence

    Unsupervised Semantic Hashing with Pairwise Reconstruction

    Full text link
    Semantic Hashing is a popular family of methods for efficient similarity search in large-scale datasets. In Semantic Hashing, documents are encoded as short binary vectors (i.e., hash codes), such that semantic similarity can be efficiently computed using the Hamming distance. Recent state-of-the-art approaches have utilized weak supervision to train better performing hashing models. Inspired by this, we present Semantic Hashing with Pairwise Reconstruction (PairRec), which is a discrete variational autoencoder based hashing model. PairRec first encodes weakly supervised training pairs (a query document and a semantically similar document) into two hash codes, and then learns to reconstruct the same query document from both of these hash codes (i.e., pairwise reconstruction). This pairwise reconstruction enables our model to encode local neighbourhood structures within the hash code directly through the decoder. We experimentally compare PairRec to traditional and state-of-the-art approaches, and obtain significant performance improvements in the task of document similarity search.Comment: Accepted at SIGIR'2
    corecore